Information contained in this Edsel Restoration Topic was produced and distributed by the Ford Motor Company to its dealers and service departments for maintenance of the Edsel automobile. It is presented here by the International Edsel Club as a public service to promote the preservation and restoration of the Edsel and to those who may find it of some benefit. The club, in no way, accepts responsibility for its use.
Above: The “1958 Edsel Automatic Transmission Manual” was prepared by the Service Department of the Edsel Division and released in July 1957. This 79 page manual provides instruction for overhaul of the transmission and the teletouch transmission control however; there is no diagnostic trouble-shooting or repair information for the teletouch system in this manual. That task would reach critical mass once the cars hit the road and would fall upon the Manufacturing Operations Quality Control Department of the Edsel Division.

Right: Page 75 of the manual shows an overhaul diagram of the “Selector Button Steering Column”.

![Selector Button Steering Column Diagram](image-url)
Above: Spiral-bound “1958 Teletouch Transmission Control Manual” was prepared by the Quality Control Department, Manufacturing Operations of the Edsel Division sometime in 1957. Comprised of 35 pages, it contains a system description, component illustrations, circuit wiring diagrams, and much-needed diagnostic trouble-shooting and repair procedures. It is the first manual to provide this instruction.

Right: A second manual entitled “1958 Edsel Teletouch Transmission Controls Operation and Diagnosis” was prepared by the Service Training and Promotional Department of the M.E.L. Division sometime after January 1958. A condensed version of the first, this manual contains 22 pages.

Preceding 11 pages: Edsel Electrical Service Bulletin #8 “1958 Edsel Teletouch Control - Automatic Transmission” dated 5-20-59 was prepared by Service Engineering Department, Product Engineering of the M.E.L. Division. Chronologically, it is the final factory publication to address service and repair of the Teletouch Control System. The bulletin is a summary of information found in the manuals and is presented in its entirety for reference.
# 1958 Edsel TeleTouch Control - Automatic Transmission

## Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Service Problems</td>
<td>2</td>
</tr>
<tr>
<td>Shifter Motor Failure</td>
<td>2</td>
</tr>
<tr>
<td>Starter Energizes During Neutral to Reverse Shifts</td>
<td>2</td>
</tr>
<tr>
<td>Steering Column Noise</td>
<td>3</td>
</tr>
<tr>
<td>Teletouch Selector Motor Wiring</td>
<td>5</td>
</tr>
<tr>
<td>Relocation of Transmission Inhibitor Switch</td>
<td>5</td>
</tr>
<tr>
<td><strong>Teletouch Control Trouble Shooting</strong></td>
<td>7</td>
</tr>
<tr>
<td>Circuit Breakers</td>
<td>7</td>
</tr>
<tr>
<td>Wiring Harness and Connections</td>
<td>7</td>
</tr>
<tr>
<td>Push Button Switches</td>
<td>8</td>
</tr>
<tr>
<td>Park Relay</td>
<td>8</td>
</tr>
<tr>
<td>Shifter Motor Relay (Selector)</td>
<td>8</td>
</tr>
<tr>
<td>Shifter Motor</td>
<td>9</td>
</tr>
<tr>
<td>Inhibitor Switch</td>
<td>9</td>
</tr>
<tr>
<td><strong>Push-Start and Towing Instructions</strong></td>
<td>9</td>
</tr>
<tr>
<td>Push-Starts</td>
<td>9</td>
</tr>
<tr>
<td>Towing the Car</td>
<td>9</td>
</tr>
<tr>
<td><strong>Wiring Diagrams</strong></td>
<td>9</td>
</tr>
<tr>
<td>Teletouch Wiring System Electrical Components - Corsair and Citation Models</td>
<td>10</td>
</tr>
<tr>
<td>Teletouch Wiring System Electrical Components - Ranger and Pacer Models</td>
<td>10</td>
</tr>
<tr>
<td>Teletouch Transmission Circuits - Schematic</td>
<td>11</td>
</tr>
</tbody>
</table>
INTRODUCTION

Teletouch Control System description, operation, adjustments and overhaul procedures are contained in the 1958 Edsel Automatic Transmission Manual.

To provide a comprehensive reference for servicing the Teletouch Control System, this article summarizes information previously published regarding service problems and trouble shooting procedures. Push-start, towing instructions and wiring diagrams are also included.

SERVICE PROBLEMS

SHIFTER MOTOR FAILURE

If the shifter motor fails to shift the transmission and/or erratic shifts are encountered, the failure is most probably due to sticking brushes in the motor.

Sticking brushes will not bear on the commutator with enough pressure to allow current to flow freely between the two. This condition weakens the motor field and also causes an arc on the commutator, resulting in insufficient power to shift the transmission. Before replacing the shifter motor, use the following diagnosis procedure.

If a failure to shift or an erratic shift condition is encountered, refer to the Trouble Shooting section of this bulletin and perform the electrical test given in the Shifter Motor procedures. This test will determine if the rotary switch wires and/or sticking brushes are at fault. If the switch wires are found to be properly soldered, then, sticking brushes are probably causing the trouble. To free up the brushes, remove the shifter motor assembly from the transmission and proceed as follows:

1. Disconnect the two wires from the end of the motor, and remove the two (2) through bolts.
2. Carefully remove the end plate and brush assembly from the housing and armature.
3. Inspect the brushes for wear and burned contact surfaces. Insert a small screw driver in the brush wire travel slot, and spread the brush holder slightly to allow free brush movement.
4. If the armature commutator is burned slightly, it should be sanded carefully with No. 00 sandpaper.
5. Before assembling the motor, apply a coat of rubber cement, part number B&F19563-A, between all joints, under screw heads, around wires that enter the unit, and other points where water might enter.
6. Reassemble the motor and install the assembly on the transmission. Depress the push buttons one at a time to see if the shifts are accomplished properly.

STARTER ENERGIZES DURING NEUTRAL TO REVERSE SHIFTS - ALL MODELS

The starter circuit may be energized momentarily during "N" to "R" shifts on Tele-touch Drive cars equipped with back-up lights. When this condition exists, momentary energizing of the starter will also occur during any shift that passes through these two positions.

The following test should be made to determine if this condition exists, even though the starter cannot be heard to operate:

Set the parking brake. Connect a test lamp from the "S" terminal of the starter relay to ground. With the ignition switch turned "ON", depress the "N" and then the "R" button. If the test lamp lights, there is current to the starter relay, and the starter will operate momentarily.

To correct this condition, reverse the two back-up light wires at their bullet type connectors located adjacent to the master brake cylinder. In attempting to reverse the wires at the connectors, it may be necessary, in some instances, to replace a female connector with a male connector to provide the correct wiring hook-up. Connect the yellow-red band wire to the black-red band wire that leads to the back-up lamp. Connect the black-red band wire, leading from the shifter motor rotary switch, to the black wire with the red female connector, leading from the ignition switch.

If the preceding operations do not correct the condition, internal trouble exists in the shifter motor assembly, and the assembly should be replaced. Refer to the following chart:
<table>
<thead>
<tr>
<th>PART NO.</th>
<th>PART NAME</th>
<th>QUANTITY REQ'D</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8E-7055-B</td>
<td>Transmission Shift Control Motor Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Ranger &amp; Pacer Series)</td>
<td></td>
</tr>
<tr>
<td>B8E-7055-A</td>
<td>Transmission Shift Control Motor Assembly</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>(Corsair &amp; Citation Series)</td>
<td></td>
</tr>
</tbody>
</table>

When a new shifter motor assembly is installed, perform the test procedure (paragraph 3) to make sure the condition does not exist in the new assembly.

STEERING COLUMN NOISE - TELETOUCH DRIVE

Steering column noise has been encountered on a few cars equipped with the Teletouch Drive. The noise generally sounds like rough bearings and, in some instances, the roughness can be felt in the steering wheel.

In some cases, the noise may be caused by a rough surface and/or no lubricant on the horn contact plate where it rubs the spring loaded button on the selector switch. Therefore, when noise is encountered, first remove the horn contact plate; check for smooth surfaces on the plate; smooth up as required and apply a light coat of lubricant on the contact plate. Install the plate and check the noise condition. If the noise is still objectionable, it will be necessary to remove, disassemble, and rework the steering column as outlined in the following steps:

1. Remove the steering column assembly as described on page 74 in the 1958 Edsel Automatic Transmission Manual. Disassemble the column as outlined through step 13 in the disassembly procedure (omit step 7 in the disassembly procedure).

2. Four (4) special tools are required to perform the following steering column rework operations.
   a. Tool No. 77846 - Stabilizer Gear Aligning Tool.
   b. Tool No. 7200 - Steering Column Holding Blocks.
   c. A round wood dowel, 1-3/8 to 2 inches in diameter, and about 10 inches long (may be purchased from any lumber dealer).
   d. A piece of 1 inch I. D. pipe about 5 inches long. Square off one end of the pipe, thread and cap the opposite end for driving purposes (may be purchased from any hardware or plumbing shop).

3. Insert the wood dowel into the lower end of the steering column and support the column upright on the dowel. Position the piece of pipe on top of the upper bearing nylon spacer and tap the spacer firmly into the bearing. Make sure the top surface of the spacer is even at the split line.

4. Using a dial indicator, check the runout of the upper end of the steering shaft at a point just below the snap ring groove. If the shaft runout is less than 0.008 inch, it is within specifications. However, if the rotation of the shaft is very rough or binds during rotation, further disassembly is required.

5. Place the Holding Blocks, Tool 7200, over the steering column tube and clamp the assembly in a vise.

6. Remove the steering shaft from the column tube (steps 14 through 16 on page 74 in the Automatic Transmission Manual).

7. Inspect the upper and lower column bearings for roughness and replace if necessary.

   NOTE: Remove the column tube upper flange to provide access to the upper bearing.

8. Replace the steering shaft if the runout exceeded 0.008 inch or if the conical lower bearing seat is scratched or nicked.

9. Repack both column bearings with fiber grease, part B8E-19583-AUP.

10. Install the steering shaft in the column tube; install a new nylon spacer, part number B8E-3518-B, and preload the spacer as outlined in step 3.

11. Install the turn indicator switch and wires. Apply a small amount of lubricant on the switch plate shaft and nylon roller. Install the switch plate.

12. Inspect the stabilizer gear and plate for distortion, nicks, burrs, and signs of
wear. Replace if necessary.

13. Install the stabilizer gear and plate assembly and tighten the screws finger tight.

14. Place the gear aligning tool (Tool 77846) on the end of the steering shaft and down over the stabilizer gear. Align the gear as needed, then tighten the retaining screws. Lubricate the gear with fiber grease, part number B8E-19583-A.

15. Remove the four small pinion gears and shaft from the steering wheel lower hub.

16. Clean all grease from the hub and selector switch housing. Check the bearing races in the hub and switch housing for cross scratches and pits. If scratches or pits are found or the bearing race track shows a ball contact mark that is not inside the track form, replace the lower hub assembly.

17. Assemble the new style pinion gears into the lower hub. During assembly of the pinion gears, be sure to turn the outer gear counterclockwise to wind and tighten the spring.

NOTE: When properly assembled, the lug on the outer gear will be past the lug on the inner gear.

18. Lubricate the gears and hub turn-off cam with fiber grease, part number B8E-19583-A. Install the hub, lockwasher, and nut on the steering shaft, and tighten the nut to 50 lbs. ft. torque.

19. Inspect the upper ball bearing for defects and replace if necessary. Pack the bearing with fiber grease, part number B8E-19583-A, and position the bearing in the hub. Turn the hub until the nut in the lower edge of the hub cover aligns with the turn indicator handle opening in the steering column tube flange.

20. Lubricate the selector switch housing gear and upper end of the steering shaft with fiber grease, part number B8E-19583-A. Insert the switch housing into the hub so that the threaded hole, 1/2" from the guide pin hole, is aligned with the notch on the upper lip of the hub. Secure the switch housing to the steering shaft with the spring washer and snap ring. Apply lubricate to the spring washer.

21. Apply lubricate to the selector rings on the switch and wire tube assembly. Install the assembly into the steering column; align the neutral switch with the notch on the upper lip on the hub. Secure the switch assembly with the three (3) screws.

22. Install rubber "O" ring, part number B8E-3492-A, between the lower hub and cover. Apply liquid soap to the "O" ring, and stretch it over the three (3) studs on the lower hub. Press the "O" ring firmly into place under the cover at the top edge.

NOTE: The rubber "O" ring is a new part, and was not used on the early steering column assemblies.

23. Apply lubricate to the horn contact plate; install the steering wheel, horn contact plate assembly, horn ring, push buttons, trim plate, and medallion.

24. Install the steering column assembly in the car. Apply lubricate to the outer selector rings in the lower part of the column before installing the selector switch terminal block.

The new parts required, or that may be required, are listed for your ready reference:

<table>
<thead>
<tr>
<th>CLASS</th>
<th>PART NO.</th>
<th>PART NAME</th>
<th>QUANTITY REQD.</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-7854-AUP</td>
<td>Pinion Gear (inner)</td>
<td>2</td>
</tr>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-7855-AUP</td>
<td>Pinion Gear (outer)</td>
<td>2</td>
</tr>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-7856-AUP</td>
<td>Pinion Spring</td>
<td>2</td>
</tr>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-7862-AUP</td>
<td>Pinion Spacer</td>
<td>2</td>
</tr>
<tr>
<td>Ford &quot;S&quot;</td>
<td>UP-371320-S2</td>
<td>Snap Ring</td>
<td>2</td>
</tr>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-3518-B</td>
<td>Steering Shaft Nylon Spacer</td>
<td>1</td>
</tr>
<tr>
<td>&quot;C&quot;</td>
<td>B8E-3492-A</td>
<td>Rubber O-Ring</td>
<td>1</td>
</tr>
<tr>
<td>&quot;Z&quot;</td>
<td>B8E-19583-A</td>
<td>Grease (1 lb. can)</td>
<td>1</td>
</tr>
<tr>
<td>&quot;A&quot;</td>
<td>B8E-3524-E</td>
<td>Steering Shaft</td>
<td>1</td>
</tr>
<tr>
<td>&quot;A&quot;</td>
<td>B8E-3517-A</td>
<td>Steering Gear Shaft Bearing</td>
<td>2</td>
</tr>
<tr>
<td>&quot;A&quot;</td>
<td>B8E-7846-A</td>
<td>Selector Switch Housing Bearing</td>
<td>1</td>
</tr>
</tbody>
</table>
Fig. 1 - Selector Motor and Inhibitor Switch Wiring Harness Installation

TELETOUCH SELECTOR MOTOR WIRING

In some instances, the wiring harness for the Teletouch selector motor and inhibitor switch may be incorrectly installed. If the harness is routed too close to the exhaust pipe or manifold, heat will deteriorate the wiring insulation. This could cause a short which would affect the performance of the selector motor.

Figure 1 shows two clips securing the harness to the front side of the dash panel just in back of the left exhaust manifold. The lower clip is too small to ensure retention and prevent the harness from touching the exhaust manifold. Replace the lower clip with a larger clip, part number 358313-S32.

The shift motor harness is secured to the left front fender apron by a clip. Discard this clip and reroute the harness as shown in figure 1. Attach the harness with a new clip, part number 356628-S, to the inboard screw of the dash panel grommet retainer as shown.

Check the routing of the inhibitor switch and selector motor wiring under the car. The wiring harness is secured to the transmission housing by two clips. Make sure the harness is securely installed in the clips, and positioned so as to prevent contact with the exhaust pipe.

RELOCATION OF TRANSMISSION INHIBITOR SWITCH - ALL MODELS

Failure of the Teletouch drive to shift into, or out of "R" reverse and "P" park posi-

Fig. 2 - Inhibitor Switch Test Plug

tions has been experienced on some cars operated in areas where salt is used on the roads during the winter months. The trouble, in most instances, has been traced to salt spray and condensation, causing rust and corrosion in the inhibitor switch and on the contact points.

A quick check to determine if the inhibitor switch is faulty can be achieved by making a test plug from an inhibitor switch connector and wires. Splice the two orange wires and two green wires as shown in figure 2.

To test the inhibitor switch, disconnect the switch at the connector, and connect the test plug to the harness connector. This bypasses the inhibitor switch, providing a complete circuit to the shifter motor for park and reverse. Turn the ignition key to the "ON" position (do not start the engine) and operate the "P" and "R" buttons. If the shifter motor operates satisfactorily in these positions, the inhibitor switch is defective and should be replaced.

When inhibitor switch assembly replacement is required, the new switch should be relocated to prevent recurrence of the difficulty. The inhibitor switch on Ranger and Pacer models should be attached to the second bolt from the rear on the intake manifold (left cylinder bank) as shown in figure 3. On Corsair and Citation models, attach the inhibitor switch to the upper right converter housing to engine bolt as shown in figure 4.

The following parts are required to relocate the inhibitor switch. Most of these parts are stock items or may be purchased locally.
<table>
<thead>
<tr>
<th>PART NO.</th>
<th>PART NAME</th>
<th>QUANTITY REQ'D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFC-12043-A</td>
<td>Ignition Coil Strap</td>
<td>1</td>
</tr>
<tr>
<td>357763-S</td>
<td>90° Elbow-1/4'' Pipe x 1/4'' Flare Tube (Female)</td>
<td>2</td>
</tr>
<tr>
<td>87943-S8</td>
<td>1/4'' Flare Tube Nut (Male)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>10-32 x 2'' Round Head Screw</td>
<td>1</td>
</tr>
<tr>
<td>34803-S7</td>
<td>#10 Lockwasher</td>
<td>1</td>
</tr>
<tr>
<td>34079-S8</td>
<td>10-32 Nut</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>90° Elbow-1/4'' Pipe x 1/4'' Pipe (Female)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1/4'' Copper Tube (Ranger-Pacer)</td>
<td>37 inches</td>
</tr>
<tr>
<td></td>
<td>1/4'' Copper Tube (Corsair-Citation)</td>
<td>28 inches</td>
</tr>
</tbody>
</table>

**Fig. 3 - Inhibitor Switch Location - Ranger and Pacer Models.**

To install the inhibitor switch in the new location, proceed as follows:

1. Refer to figure 5. Cut off the reinforced section of a coil strap as indicated by the dotted line. Elongate the two 3/16 inch holes in the strap to enable the 10-32 screw to clear the inhibitor switch.

2. Position the inhibitor switch in the coil strap so the arrow on the end of the switch is pointing upward when the switch is installed, then tighten the clamp screw.

**Fig. 4 - Inhibitor Switch Location - Corsair and Citation Models**

3. Install the 90° elbow and the 90° tubing elbow on the switch as shown in figure 3.
4. Using the correct length copper tube, install the two flared nuts, then flare the tubing.
5. Loosely attach one end of the copper tube to the inhibitor switch. On Ranger and Pacer models, route the tubing around the accelerator retracting spring, over the converter housing and transmission, then to the left side of the transmission.
Fig. 5 - Rework of Coil Strap

Attach the switch assembly with the intake manifold bolt. See figure 3. Tighten the bolt to 25-28 lbs. ft. torque. On Corsair and Citation models, route the tubing to the rear of the converter housing, then across the top of the transmission to the left side of the transmission. Attach the switch assembly with the upper right converter housing to engine bolt. See figure 4.

6. Remove the old inhibitor switch and 45° elbow. Install the new 90° tubing elbow in the transmission opening and connect the tubing to the elbow. Tighten the tubing nut at the inhibitor switch fitting.

7. Carefully position the tubing so it does not contact the transmission, floor pan or accelerator linkage.

8. Remove the wiring harness from the two clips on the transmission case. Route the harness directly to the new switch location and join the connectors. On the Ranger and Pacer models, secure the harness connector to the dash panel with the existing clip. See figure 3. Be sure the wiring is clear of all accelerator linkage.

Operation S-13-65A "Switch - Inhibitor - Relocate" has been established for use when installing the switch at the new location. This operation allows 0.9 hours labor.

TELETOUCH CONTROL TROUBLE SHOOTING - ALL MODELS

Listed are trouble shooting procedures for the Teletouch Control system. When a non-standard condition exists in the system, perform the inspection and testing operations in the sequence listed. The major components of the Teletouch system are:

1. Circuit breakers.
2. Wiring harness and connections.
3. Push button switches.
4. Park relay.
5. Shifter motor relay (Selector).
7. Inhibitor switch.

Before testing any of the sealed components, visually inspect all external wiring. The trouble often can be located in a broken or loose connection or in a short circuited or grounded wire.

As a guide in performing the tests which follow, refer to the wiring diagrams listed in the table of contents of this Service Bulletin.

CIRCUIT BREAKERS

1. Check the 40-ampere circuit breaker adjacent to the shifter motor relay on the engine compartment side of the dash panel. This circuit breaker provides current to the shifter motor through its relay.

2. Check the 10-ampere circuit breaker attached to the left side cowl panel behind the trim panel. This circuit breaker provides current to the "B" terminal on the selector switch block on the steering column tube.

WIRING HARNESS AND CONNECTIONS

1. Multiple connectors are located under the left rear corner of the hood near the brake master cylinder. On the Ranger and Pacer series, a black connector is used which contains six wires; orange, green, white, violet, brown, and red. On the Corsair and Citation series, two connectors are used; (1) A blue connector with four wires; white, green, red with blue band, and gray with blue band. (2) A red connector with three wires; brown, orange, and violet. Separate the wires at these multiple connections.

2. On Ranger and Pacer models only, connect one lead of a test lamp to a good ground and the other test lamp lead to the male connector of the red wire. The test lamp should light when the ignition switch is turned on. This test is not required for Corsair and Citation models.
due to the difference in the wiring circuits.

3. Connect a test lamp between a good ground and the following wires with the corresponding push button depressed: orange - "P", green - "R", white - "N", violet - "Dr", and brown - "Lo". The test lamp should light for each push button depressed, but not when any other button is depressed. If the test lamp does not light, wiggle the depressed button. If the light then comes on, check the push button switch. If the results of this complete test are satisfactory, disregard push button switch tests which follow.

PUSH BUTTON SWITCHES

1. Connect a test lamp from the yellow wire (second from top) on the terminal block to ground. If the test lamp lights, the circuit, from the battery through the 10 amp. circuit breaker to the terminal, is complete. On Corsair and Citation Models, remove the left air vent for better accessibility.
NOTE: This test can be substituted for the 10 ampere circuit breaker check in Step "2" of "Circuit Breakers".

2. Depress each button consecutively from "P" to "R" to "N" to "Dr" and to "Lo"; at the same time, move the test lamp lead up one terminal starting with the orange wire at the bottom "P" terminal. The test lamp should light only when the corresponding wire is contacted and the button is depressed. Press all buttons with the test lamp lead on a given wire. The lamp should not light except when the corresponding button is depressed.

3. If the results of the test are unsatisfactory, remove the terminal block, connect a jumper wire to the second brush from the top of the terminal block, and touch the wire to the second selector ring from the top of the ring assembly. Connect one lead of a test lamp to ground and touch the other lead to the bottom selector ring. The test lamp should light with the "P" button depressed. Touching the test lamp wire to any other selector ring should not cause the test lamp to light.

4. Depressing each button from "P" to "R" to "N" to "Dr" and to "Lo", and moving the test lamp lead up one selector ring as each button is depressed, should cause the test lamp to light. While each button is depressed, there should be no light when the test lamp lead is touched to any selector ring other than that corresponding to the button depressed.

5. If the results of the test are unsatisfactory, repair or replace the selector switch and tube assembly. After installing the switch terminal block, cover the block with tape to prevent possible shorting out on the speedometer or left air vent cables.

PARK RELAY

1. On Ranger and Pacer models only, turn one half of the black six-wire multiple connector 180 degrees, and connect just the two red wires which provide current to the "F" terminal of the park relay. This step is not required on Corsair and Citation models.

2. Connect a test lamp between the "F" terminal (red wire) and ground. The lamp should light when the ignition switch is turned on. If the lamp does not light, trace and check out the wire to the ignition switch.

3. To check for park relay continuity, disconnect the "A" and "B" blue wires from the park relay. Connect a jumper wire from the battery terminal of the starter relay to the "B" terminal on the park relay. Connect a test lamp from the "A" terminal on the park relay to ground. The lamp should light when the ignition switch is turned on and should go out when the ignition switch is turned off. If the test is unsatisfactory, replace the park relay.

SHIFTER MOTOR RELAY

1. Disconnect the shifter motor relay multiple connector located in the harness leading to the shifter motor.
CAUTION: Do not attempt to perform this check without disconnecting the shifter motor relay multiple connector as the rotary switch on the shifter motor would be by-passed and damage to the shifter motor and/or the transmission valve body could result.

2. Connect a jumper wire from the black wire in the relay multiple connector to ground.

3. Connect a test lamp from the yellow wire at the No. 6 terminal on the shifter motor relay to ground.

4. Connect a jumper wire from the battery
terminal of the starter relay to the small red wire at the No. 1 terminal on the shifter motor relay. The relay should click closed and the test lamp should light. If it doesn't, the relay is defective, and the shifter motor will not rotate toward the Park position.

5. Connect the test lamp from the large red wire at the No. 5 terminal to ground.

6. Connect the wire from the battery terminal of the starter relay to the small blue wire at the No. 2 terminal on the shifter motor relay. The relay should click closed and the test lamp should light. If it doesn't, the relay is defective and the shifter motor will not rotate toward the "Low" position.

SHIFTER MOTOR

With the ignition switch "on" and the multiple connectors mentioned in "Wiring Harness and Connections", step 1, still disconnected, connect a jumper wire from the battery terminal on the starter relay, in turn, to the orange, green, white, violet, and brown wires leading to the shifter motor. The shifter motor should go into the positions controlled by the wire connected. If it does not, remove the inspection plate at the rotary switch on the shifter motor and check for a loosely soldered connection in the circuit being tested. If none is found, replace the shifter motor assembly. Do not disassemble the rotary switch.

NOTE: If the shifter motor fails to go into Park or Reverse only, and the wires are properly soldered, then the trouble may be in the inhibitor switch or its wiring.

INHIBITOR SWITCH

1. Disconnect the inhibitor switch multiple connector at the transmission (two orange wires and two green wires).

2. Check the continuity between the two orange wires on the inhibitor switch. There should be continuity.

3. Raise the rear wheels, start the engine in "N", and shift to "Dr". Continuity should cease at 3 to 5 m.p.h., and begin again immediately when the speed is below 3 m.p.h.

4. Check the continuity between the two green wires on the inhibitor switch with the transmission in "N". There should be continuity.

5. Place the transmission in "Dr". Continuity should cease at 12 to 15 m.p.h., and begin again below 12 m.p.h.

6. If either test is unsatisfactory, replace the inhibitor switch assembly.

The continuity of the back-up light and the "N" and "P" starting circuits in the rotary switch may also be checked using the previously mentioned wiring diagrams as reference.

PUSH-START AND TOWING INSTRUCTIONS

PUSH STARTS

If the battery is low in charge but still provides sufficient current to operate the shift motor, the car can be started by pushing. Turn the ignition switch to the "ON" position. Depress the "N" (neutral) selector button. When a speed of approximately 30 m.p.h. has been attained, depress the "Dr" (drive selector) button.

CAUTION: Care must be taken to insure that the car transmission actually shifts into the "N" (neutral) range when the "N" (neutral) selector button is depressed.

Under certain conditions, such as a dead or low battery, there will be insufficient current available to shift the transmission when the selector button is depressed. If an attempt is made to push-start the car with the transmission actually set in the "P" (park) or "R" (reverse) position, severe damage may result. Also, if insufficient battery current is available to shift the transmission, it will not be possible to engage "Dr" (drive) while being pushed to start the engine.

TOWING THE CAR

If the transmission is inoperative, tow the car with the rear wheels off the ground or with the drive shaft removed. If the drive-shaft is removed, protect the rear of the transmission against the entry of dirt.

If the transmission is operating properly, the car may be towed with the transmission in "N" (neutral) position for distances up to 12 miles.

CAUTION: Do not tow the car in excess of 40 m.p.h.

WIRING DIAGRAMS

The following charts and wiring diagrams are provided to aid dealership personnel in identifying components of the "Teletouch" wiring assemblies. Figure 6 covers the Corsair and Citation models and figure 7 the Ranger and Pacer models.
**Fig. 6 - Teletouch Wiring Diagram - Corsair and Citation Models**

**Fig. 7 - Teletouch Wiring Diagram - Ranger and Pacer Models**

### Teletouch Wiring System Electrical Components
(Corsair and Citation Models)

<table>
<thead>
<tr>
<th>CODE</th>
<th>PART NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B8E-14303-A</td>
<td>Cable Assy. (Dash to Engine Ground)</td>
</tr>
<tr>
<td>2</td>
<td>B8E-7860-A</td>
<td>Block Assy. (Transmission Control)</td>
</tr>
<tr>
<td>3</td>
<td>B8E-14401-B</td>
<td>Wiring Assy. - Main (Instrument Panel to Dash Panel)</td>
</tr>
<tr>
<td>4</td>
<td>B8E-7057-C</td>
<td>Wiring Assy. (Transmission Shift Motor)</td>
</tr>
<tr>
<td>5</td>
<td>B8E-15824-B</td>
<td>Switch Assy. (Transmission Reverse and Park Inhibitor)</td>
</tr>
<tr>
<td>6</td>
<td>B8E-14289-B</td>
<td>Wiring Assy. (Dash Panel to Engine Gage Feed)</td>
</tr>
</tbody>
</table>

### Teletouch Wiring System Electrical Components
(Ranger and Pacer Models)

<table>
<thead>
<tr>
<th>CODE</th>
<th>PART NO.</th>
<th>PART NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B8E-17163-A</td>
<td>Wiring Assy. (Starter Relay to Transmission Selector Relay)</td>
</tr>
<tr>
<td>2</td>
<td>B8E-7860-A</td>
<td>Block Assy. (Transmission Control)</td>
</tr>
<tr>
<td>3</td>
<td>B8E-15081-A</td>
<td>Wiring Assy. (Steering Column to Transmission Selector Motor)</td>
</tr>
<tr>
<td>4</td>
<td>B8E-7057-D</td>
<td>Wiring Assy. (Transmission Shift Motor)</td>
</tr>
<tr>
<td>5</td>
<td>B8E-15824-B</td>
<td>Switch Assy. (Transmission Reverse and Park Inhibitor)</td>
</tr>
</tbody>
</table>
Fig. 8 - Teletouch Transmission Circuits